Interactive Visualization of Multivariate Trajectory Data with Density Maps
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Figure 1: A density map of vessel traffic in front of Rotterdam during a single day. The density map is a combination of four density fields each
covering a quarter of the day. The following manually defined color map is used: night is dark blue, morning is bright yellow, afternoon is dark
yellow, and evening is bright blue. Furthermore, the saturation of the color represents the density field contribution and the hue is given by the
period with the highest density. To discriminate daylight patterns from nighttime, the night and evening use half the kernel radius of the other

periods. This figure shows that the main routes are the most used during daylight, while in the night deviations from these routes occur.

ABSTRACT

We present a method to interactively explore multiple attributes in
trajectory data using density maps, i.e., images that show an aggre-
gate overview of massive amounts of data. So far, density maps
have mainly been used to visualize single attributes. Density maps
are created in a two-way procedure; first smoothed trajectories are
aggregated in a density field, and then the density field is visualized.
In our approach, the user can explore attributes along trajectories
by calculating a density field for multiple subsets of the data. These
density fields are then either combined into a new density field or
first visualized and then combined. Using a widget, called a distri-
bution map, the user can interactively define subsets in an effective
and intuitive way, and, supported by high-end graphics hardware
the user gets fast feedback for these computationally expensive den-
sity field calculations. We show the versatility of our method with
use cases in the maritime domain: to distinguish between periods
in the temporal aggregation, to find anomalously behaving vessels,
to solve ambiguities in density maps via drill down in the data, and
for risk assessments. Given the generic framework and the lack of
domain-specific assumptions, we expect our concept to be applica-
ble for trajectories in other domains as well.

Index Terms: 1.3.3 [Computing Methodologies]: Computer
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1 INTRODUCTION

In the analysis of moving objects we search for patterns in trajec-
tory data obtained by sensors. Many movement patterns are clas-
sified by Dodge et al. [6], and we can also find them in interaction
between objects [21], clustering of trajectories [3], and aggregated
patterns [2]. In this paper, we focus on aggregated spatial patterns,
in particular those from trajectories with various attributes.

With current technology, we are able to track massive amounts
of objects with other attributes than just time and position, such
as forces, object type, or object size. Additional knowledge about
objects can be added by attributes obtained by reasoning or using
web sources [29]. Current state-of-the-art aggregation methods for
moving objects often do not take these additional attributes into
account. Kernel Density Estimation (KDE) [24] is an aggregation
method suitable for showing an overview of massive amounts of
data and has been adapted for trajectory data, but only a few of
these methods take attributes into account. For instance, Willems
et al. [28] only encode the velocity of ships and Peters ez al. [22]
only encode the direction of airplanes in a density field. Since a
single density field has limited capabilities for further extensions
towards including more attributes, we focus on combining multiple
density fields [28] for subsets defined with multiple attributes.

In this paper we present a new approach for the interactive ex-
ploration of density maps of trajectories with multiple attributes.
Interactive exploration requires efficient and effective methods to
select subsets of interest as well as to generate density fields. As a
result, multiple density fields need to be shown simultaneously in
a density map to allow the user to determine similarities and dif-
ferences. With our generic model, we are able to generate a wide
range of different maps, which support story telling to explain what
happened with the objects in the data set.

The paper is organized as follows: In Section 2 we discuss work
related to density maps. Section 3 gives a model of data and den-
sity of trajectories. We describe the main features of our density
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Figure 2: The rendering pipeline of vessel density maps by Willems et al. [28]. From left to right, trajectories are smoothed with a large and a
small kernel resulting in two density fields. In the rendering, the large kernel density field is used for color mapping and the aggregated density
fields are used for the illumination. In the final density map, the color image and the gray-scale image with the illumination are multiplied.

maps in Section 4 and elaborate on the implementation on graphics
hardware in Section 5. Section 6 shows the versatility of density
maps with use cases. In the final section, we conclude the paper
and suggestions for future work.

2 RELATED WORK

Visualization is one of the many methodologies that can be used to
analyze moving objects. In Section 2.1 we discuss a selection of
visualizations related to moving objects. For our visualization we
have used techniques related computer graphics, such as convolu-
tion as discussed in Section 2.2 and volume rendering in Section
2.3. We conclude with related topics in scientific visualization and
cartography in Section 2.4.

2.1 Moving Object Analysis

Additional attributes are taken into account in the analysis of mov-
ing objects by Dykes et al. [7] using multiple views. A visual an-
alytics tool to analyze vessel data is demonstrated by Riveiro et al.
[23]. Bak ef al. [4] show by means of glyphs the spatio-temporal
characteristics of mouse trajectories in multiple areas. Hurter et al.
[11] pioneer with high-end graphics hardware for interactive visu-
alizations of massive amounts of airplane trajectories. All these
trajectory visualizations have in common that they do not smooth
the data, while using multiple attributes.

2.2 Convolution

KDEs are generated by convolution of the original data and smooth
data to give an overview at various levels of detail. Trajectories can
also be convolved by moving a smoothing kernel along a trajectory.
To convolve trajectories, a line needs to be convolved, which hap-
pens in continuous parallel coordinate plots [10] as well. Jin et al.
[14] investigate methods to analytically solve the convolution equa-
tions with polynomial kernels, resulting in efficient computation.
Willems et al. [28] visualized vessel traffic at two levels of detail
simultaneously revealing both global patterns, such as traffic lanes,
and local patterns, such as anchoring zones. Hurter ef al. [12] ex-
tended their own hardware-accelerated visualization with accumu-
lation, where only the sample points of the trajectory are convolved,
in contrast to line segments in [28] or a variant in 3D by Demsar [5].
Apart from trajectories other spatio-temporal data can be convolved
as well, such as syndromic hotspots by Maciejewski et al. [18].

In our approach, we focus on specific subsets by assigning var-
ious kernel radii to them. This has a similar effect as a semantic
depth of field as proposed by Kosara er al. [16], where unimpor-
tant parts of an image are convolved with relatively large kernels,
to disable pre-attentive vision of sharp features in these areas.

2.3 Volume Rendering

In classic volume rendering [17], an iso-surface is constructed
based on a transfer function, which is a mapping of a scalar value to
a color and an opacity, to visually divide the data set in recognizable
surfaces, such as skin and bones. In our approach, we have a sim-
ilar goal, since we want to divide the data in semantically different
subsets, but instead of mapping a density value to a visualization
parameter, such as color, we take other attributes into account at the
position to be displayed. To keep the pictures interpretable by the
user, we use simple step functions, instead of continuously defined
higher-dimensional transfer functions as Kniss et al. [15] proposed
to incorporate multiple attributes in volume data.

2.4 Scientific Visualization and Cartography

A convenient representation of a density field is as a regular grid
of cells with values, called a raster map. Raster maps are one of
the various techniques in multivariate scientific visualization [8].
In cartography, map algebra [26] is a well-known method to math-
ematically combine these raster maps to derive features. Mennis
et al. [19] extend map algebra to spatio-temporal data for raster
maps that change over time. Raster maps can also be combined
visually with a grid of small glyphs as shown by Miller [20].

3 MODELS FOR TRAJECTORIES

This section gives a brief overview of the models for trajectory data
and a trajectory density field as proposed by Willems et al. [28].

3.1 Data Model

The movement of an object o is modeled by a trajectory, which
is a sequence T, of tuples &¢. For an object o, we abbreviate a
tuple as @; containing the following elements: a time stamp #;, a
position p;, and other derived or measured attributes, such as speed
v;, type, width, and volume. The tuples are ordered by time and
most attributes can be interpolated between consecutive tuples.

For tuples @ and @, we reconstruct the continuous path p(7)
with 7 € [tg,]] using the displacement x(¢), which is derived from
the measured positions p;, time stamps #;, and speed v;:

x(t) = la(t—10)* +v(t—19)
with a= 220 and v=1(rg) = Bl _vzw )
P() = Potx(t)pply (@)

By taking the speed measures into account as well, we obtain a
more accurate approximation of the path of the actual movement
from the sensor data. With this movement model we are able
to compute an accurate density field of trajectories, by moving a
smoothing kernel along the actual path of the movement.
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Figure 3: The architecture of our framework to generate density maps. From left to right, the trajectory data is split with various filters resulting in
a number of subsets for which we compute a density field with the given weight w; and kernel radius r;. From here there are two routes. We may
aggregate the density fields in a single density field via the solid lines. Then the single density field is rendered to an image with a color map ¢;
and visualized together with its illumination in a density map. The other route, also via the dashed lines, first renders the density fields using a
color map ¢; and then composes them and applies the illumination of the aggregate density field resulting in a density map.

3.2 Density Field

In [28] trajectories are smoothed using a radially symmetric kernel
function k, with radius r to obtain a density field with both local and
global movement features. A continuous density field is a function
C:R? — R, defined in [28] for a single object o with path p(r) as

1

T
G@ = 7 /[ kla-p@)ar

3)
C,(q) is the contribution of object o to the density in point q. It
is normalized in time to enable comparison of density fields with
varying durations. The density field C(q) of a set of trajectories is
the summation of the density fields C,(q) of all objects. We obtain
a (discrete) density field D(Q) on a raster of cells by sampling C in
the center of each cell Q and multiplying by a weight w.

Figure 2 shows how density fields have been visualized as so
called vessel density maps [28]. These maps show variations
in speed as different density contributions highlighting significant
maritime areas, such as groups of high contributions for anchor-
ing zones where vessels wait to enter a harbor. However, in these
maps only a single attribute is visible. For instance, with vessel
density maps we can not see the variations of area usage over time.
Since trajectories are essentially multivariate data, the generaliza-
tion of vessel density maps introduced in this paper can take more
attributes into account.

4 DENSITY MAPS

We present a framework to enhance the vessel density fields as de-
scribed in the previous section with additional attributes. Figure
3 shows an overview of the new architecture for density maps, in
which the architecture for creating vessel density maps recurs. The
main principle we apply is that the data is filtered resulting in vari-
ous subsets, which are aggregated into a single representation in ei-
ther the density model or the visualization phase. In the remainder
of this section we discuss the various aggregations in more detail.
Examples of how these features can be used in real-world scenarios
are shown in Section 6.

4.1

A density field as defined in Section 3.2 is computed based on a
subset of the data defined by a filter. Typically, a filter selects all
data elements where the value of a specified attribute is within a

Subsets and Parameters

given range. For example, filtering on the time attribute may result
in a subset representing all objects in the night. In Section 4.5 we
explain techniques for creating filters using multiple attributes.

For each subset a density field is computed with its own user-
defined parameters: weight w and kernel radius r. The values of
these parameters can be set for each subset with an interactive bar
chart, with each bar shown with the hue of the color map c of the
density field. Figure 4 shows such a bar chart for the kernel radius
of five subsets used in Figure 12 where each subset represents a ship
type. The density fields are updated after changing the bar chart.

Once we have a set of density fields we can follow two routes:
Either we forward the density fields to the rendering stage and com-
pose the images as explained in Section 4.4, or we can aggregate the
density fields into a single density field.
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Figure 4: Interactive bar chart to set a density parameter for subsets.

4.2 Density Aggregation

For density aggregation we choose the following variations: addi-
tion, absolute difference, and anomaly detection (see Figure 5). For
a cell Q density aggregations D are defined in terms of densities D;:

D addition (Q) ¥, Di(0Q), )
Duiterence (Q) = ‘ D>(Q)—D;(Q)|, and 5)
®anomaly(Q) = max(0, D2(Q) —D1(Q)). (6)

In Equation (4) we define a simple addition for multiple density
fields. Note that by choosing the density field weights w; = 1/N, we
obtain an average density value. With D ,44ijon We obtain the ves-
sel density map of [28] if we use two density fields containing both
all data and convolve one with a large and one with a small kernel
radius. The absolute difference in Equation (5) and the anomaly de-
tection in Equation (6) are defined for two densities. In aggregation



D difference» We simply search for a symmetrical difference between
the two density fields. The aggregation D yomaly is typically used
to find deviations of a sparse density field D, containing instances
of behavior with respect to a dense density field D representing
normal movements. In Figure 5 the gray trajectory is only gray, or
is anomalous, at the places where the other trajectory is not located.
Section 6.2 shows anomalies with real-world data.
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Figure 5: Density aggregation: (A) Weighted addition, (B) absolute
difference, and (C) anomaly detection.
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4.3 Rendering

In the visualization part of the architecture in Figure 3 the density
fields are rendered to images by mapping density values to colors
via a color map c. For a small number of density fields a single
hue color map is used for each density field. The user is supported
by a preset of clearly distinguishable hues to obtain a perceptually
balanced map, as used in Figure 12. The preset is a pastel rainbow
color map generated with Palette View [27] and sampled at equal in-
tervals for a given number of colors. The chosen color is associated
to the highest density value of the field, and a complete color map is
created by interpolating the saturation towards white, see the lower
right corner of Figure 11.

If only one density field is visualized a multi-hue color map can
be used, as hue is not needed to distinguish between density fields.
We can choose, for instance, to use a yellow-to-red color map with
more contrast between density levels, as used in Figure 9 and 11A.

4.4 Image Composition

Not only density fields but also the color mapped images of density
fields can be aggregated. To obtain a density map, we aggregate the
color mapped images with an operation called image composition
and, finally, apply Phong shading on a height field given by the
density aggregation field (see Figure 3).

We distinguish five types of image compositions: single-field
Isingle> aggregate-field Jaggregare, Opacity-blend Jopqciry, max-blend

A
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Figure 6: Image composition: (A) Single-field, (B) multi-field, (C)
opacity-blend, (D) max-blend, and (E) block.

Imax, and block Tk (see Figure 6). The output of I/, is simply
one of the color mapped density fields and for J,ggregare it is the
color mapped aggregated density field obtained by D. Since these
two image compositions have a single density field as input they can
use a multi-hue color map. In the vessel density shown in Figure
L1A Jgre is used, in Figure 9 Jggeregare is used.

The Jopaciry composition is a weighted sum of the colors of the
rendered density fields in RGB-space with the opacity as weight.
With J,,4x we show the color of the density field with the highest
value, as used in Figure 1. From the latter two image compositions
it is hard to see which colors are used in a certain neighborhood,
therefore we introduce Jp;,.«. In this image composition, a new im-
age is created covering the same area as the input images, but with
a much lower resolution to avoid dithering effects. The color of
the pixels in this new image are set as follows: If a pixel overlaps
with one or more density values larger than zero, one of these den-
sity fields is randomly chosen and the corresponding color is used.
Hagh et al. [9] have evaluated this composition, called color weav-
ing, and show that it is more effective than color blending (Jopaciry)
for two to four colors, while for upto six colors the error rates sig-
nificantly increase. In Section 6.3, I, is used to reveal various
ship type in a neighborhood.

4.5 Multivariate Filters

So far, filters for single attributes have been considered. We can
expand the usability of our method greatly by defining interactive
filters based on multiple attributes. To this end, we have developed
an interactive widget, called a Distribution Map (DM), as shown in
Figure 7 with various pairs of attributes used in vessel tracking.
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Figure 7: Distribution maps from pairs of vessel attributes.

A DM consists of a 2D-plane with two axes corresponding to two
chosen attributes and shows in gray-scale the distribution of the val-
ues of these attributes as they appear in the trajectories. Guided by
this distribution, the user, while defining a filter, selects combina-
tions of attribute intervals by drawing a set of rectangles, colored
with the same hue as the color map c for rendering the density field.
For example the pink rectangles in Figure 7A represent medium-
speed moving vessels in the morning together with fast moving
vessels in the evening. Adaptations of the rectangles result in an
update of the density field of the corresponding subset.

The distributions are generated by drawing, with additive blend-
ing, bright gray polylines as trajectories for the two attributes given
on the axes. With this technique we mimic counting how long an
attribute pair occurs in the trajectories.
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Figure 8: The pipeline for computing density fields on a GPU: (A) The trajectory segment pop; given in geographic coordinates. (B) The segment
mapped to map coordinates using the cylindrical equal-area projection and its OBB v;v,v3v4 at distance r. (C) The fragments inside OBB. (D)
The density field computed for each fragment in OBB. This density field is then added to already computed densities of other segments.

5 IMPLEMENTATION

In this section we give a method for parallel computation of density
fields on the GPU based on the non-parallel version in [28]. As in
that algorithm we assume that the trajectory points are given in ge-
ographic coordinates and a cylindrical equal-area map-projection
G [25] is used to transform these in map coordinates. Given the
density fields the visualization of the final density map is straight-
forward, also realized on the GPU, and omitted here.

5.1

A method for parallelization of density field computations either
has an image-space or an object-space approach. In an image-space
approach the parallelization is done over computations per pixel,
where in an object-space approach it is done over computations per
object. Here we chose an object-space approach where we sim-
ply traverse the objects, in this case the trajectory segments. Addi-
tional advantages are that adding and removing trajectory segments
is trivial and that the regular graphics pipeline elements, such as the
rasterizer and the render output unit, can be used without explicit
synchronization to obtain high throughput.

Parallelization

Algorithm 1 ParallelComputeDensityField()

CopyTrajectoriesToVideoMemory()
D «— 0y g {D becomes zero matrix }
for o € Objects do
for tuples @; and @; in trajectory 7, do in parallel
Po < Po(ti);P1 < Po(tir1) -
OBB «+ oriented bounding box at distance K to pop
for (u,v) € OBB do in parallel
{Get geographical coordinate of the cell center}
q— G (u,)
{Assign density based on Equation (3) in Section 3.2}
D(u,v) < D(u,v) +Cy5;(q)
return D;

Our approach is given in pseudo code in Algorithm 1 and il-
lustrated in Figure 8. We first construct a texture according to the
subdivision of our geographic space into uniform cells with equal
area. For each vessel o we render its trajectories to this texture that
ultimately represents the density field. For each trajectory we han-
dle all line segments between two consecutive tuples ¢; and ;. |.
Line segments are processed in parallel by geometry shaders that
construct, given a line segment pop;, an oriented bounding box
(OBB) for the points at most distance r, the kernel radius, from the
rhumb line pop; [1] and return four vertices defining an OBB (see
Figure 8B). Using the rasterizer the OBB is then subdivided into
fragments (see Figure 8C), representing the cells to whose density
the object o contributes. For each fragment (u,v) a fragment shader
is run that computes the geographical coordinates q of the frag-
ment (see Figure 8D) using the inverse of the cylindrical equal-area

map-projection G. Finally, the density contribution Cﬁ(q) is ad-
ditively blended into density field D by the render output unit.
Some issues are not handled in the pseudo code of Algorithm 1.
First, for reasons of accuracy almost stationary objects are handled
different in the sense that their density is computed by drawing a
texture mapped fat point with radius r. Second, the standard for-
mula for computing the great circle distance, which is inaccurate
for points at small distances, is replaced by an approximation that
is stable for such points. Third, numerical integration of Equation
(3) uses Simpson’s rule. And finally, kernel evaluation is a texture
look up, which allows to us to use arbitrary finite-support kernels.

5.2 Performance

The pictures and performance tests in this paper have been gen-
erated on an Intel Core i7 CPU at 2.8 GHz with 6 GB of RAM
memory and an NVidia GeForce GTX 285 with 1 GB of video
memory. The computation time of visualizing a single density field
depends on the size of the density field, the kernel radius, the num-
ber of steps in the integral approximations, and the size of the data
set. For a typical data set, containing data from a single day in
the North Sea with 1390 objects and 306,521 data points, a density
field of 1250x1020 cells, representing an area of 125 km by 102
km, is computed and displayed on a screen of 900x900 pixels in,
on average, 0.77 seconds for a kernel radius of 2 km. This does not
give full interactive rate, but this can be accomplished by diminish-
ing the accuracy of the density map during interaction. There are
several ways to do so. First of all reducing in the above example
the density map to 125x102 cells and using Catmull-Rom spline in-
terpolation for intermediate values reduces the computation time to
0.13 seconds. The cell size is then still half the kernel radius and the
overall appearance of the image remains intact. Alternatively, the
number of numerical integration steps can be reduced from the de-
fault 10 steps to 5 steps to gain up to a factor of two in performance
while still obtaining acceptable results.

The interactivity could suffer when computing multiple density
fields for a single density map. However, in practice, this is not
problematic. If for the density map the data has been split in several
subsets, one for each density field, the total computation time is ap-
proximately the computation time of a density field using the com-
plete data set. If the density map requires multiple density fields
using the full data set, the interaction is mostly such that only one
density field needs recomputation and in this case only the initial
computation of the density map is relatively slow.

6 MARITIME USE CASES

The density map framework is intended for expert users, who ex-
plore distributions of attributes defined along trajectories. In the
exploration, the user mainly interacts with the distribution maps,
though the framework is extensive in fine tuning for optimizing de-
tails in the density maps. One of the possible outcomes of the ex-
ploration is a density map, which can be used as a static overlay



in addition to the regular operational maps containing live traffic
for supporting monitoring tasks. To show the expressiveness of our
framework, we have defined various use cases towards open prob-
lems in the analysis of moving objects with a density approach. The
use cases are taken from the maritime domain and concern trajec-
tory data from vessels.

Professional vessels with a gross tonnage of three hundred tons
and up are obliged to broadcast their current status using the Auto-
matic Identification System (AIS) [13]. The trajectory data consists
of many attributes, such as time, location, ship type, dimensions,
destination, and so forth. AIS is used for safety and security by
either captains sailing on board of a ship, or by surveillance oper-
ators guarding coastal areas. Historical AIS data can be used for
planning of the spatial usage of coastal areas, for instance by val-
idating whether or not all ships have followed the rules. The data
set contains both route-bounded vessels (e.g., tankers, cargo ships)
and non-route-bounded vessels (e.g., pleasure craft, tugs), hinting
that our method works for both constrained trajectories (e.g., cars,
trains) and unconstrained trajectories (e.g., animals, pedestrians).

6.1 Temporal Aggregation

In a vessel density map [28], the order in which movements take
place is lost, since all trajectories are convolved with the same
smoothing kernel. With the new density maps, we can vary the ker-
nel radius and kernel weight over time. Figure 9 shows a single day
of vessel traffic in front of Rotterdam harbor with four subsets of
six hours. During the day, the kernel radius is decreasing, while the
weights are increasing, and by using density aggregation D ,44ition
various moments in time are distinguishable. The resulting density
map consist of a rendering in both color and illumination of a single
aggregated density field using Jqggregare image composition.
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Figure 9: An aggregation of four density maps each covering six
hours of a day using addition as density aggregation.

In Figure 9 we see that the subset in the evening, shown with
small and dark trajectories are highlighted, while the others serve
as a context. Noticeable movement patterns in these trajectories in
the evening that were not visible before are encircled. In the circles
we clearly distinguish relatively high density along narrow tracks
indicating slow moving night ships. Notice that we can also show
variations over time using image composition J,,, as displayed in
Figure 1.

6.2 Anomaly Detection

A density field of a reasonable amount of trajectories represents the
nautical history in an area, indicating, for instance, which move-
ments are usual. By comparing other trajectories with this density
field, we can determine abnormal behavior in areas where the den-
sity field values are low. Density maps can be used to show these
anomalously behaving vessels. Figure 10 shows the result of the
density aggregation D a1y Of two density fields: one with six
days of data between Amsterdam and Scheveningen and a density
field with the traffic from the last two hours, which can be animated
by varying the current time. For the latter one, the kernel radius
is decreasing backwards in time, i.e., the head is the most current
position. The resulting density field is shown with Jg;,e;. image
composition and displays potential anomalies in color from white
(none) and green (low) to red (high) in the context of all data shown
in the shading. This example shows how density based anomaly de-
tection can be used in a real-time system.
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Figure 10: A vessel sailing between Amsterdam and Scheveningen
is marked as anomalous, since normally no vessels sail in this area.

6.3 Stopping Areas

A vessel density map [28] highlights anchoring zones as groups
of dark dot-like parts of trajectories, as shown in the rectangles in
Figure 11A. However, similar dark features popup for other slow
movements, which are not in anchoring zones. In this use case, we
try to find explanations for what happens in these areas.

First, we isolate the areas with slow movements by defining two
subsets using the DM shown in Figure 11B; a red subset for station-
ary vessels and a blue one for moving vessels. Using image compo-
sition J,,4, We show the colors assigned to the subsets in the density
map of Figure 11C. The official anchoring zones are marked with
an anchor. Area number 7 is Rotterdam harbor. The other areas
with slow movement need additional inspection.

The type of a vessel and the way it moves often explains what
happens. Therefore, we change the time axis of the DM to velocity
and change the velocity axis to vessel type (see Figure 11D) and
define six subsets with slow moving vessels of different types. The
colors of the subsets in the DM correspond with the legend on the
bottom right of Figure 11. To find the various subsets available in
these small areas we use Iy, for image composition. In Figure
11E we see a cargo ship and a nearby tanker. When decreasing the
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Figure 11: Classifying behavior of slow moving vessels in front of Rotterdam harbor during one week. In (A) a vessel density map [28] is shown
and in (C) slow moving areas are isolated using the DM in (B) and anchor zones are marked with an anchor. After defining different types of slow
moving vessels with the DM in (D) we can figure out what happened in the zoomed in areas (E...l), which correspond with the numbers in (C).

kernel radius black squares indicating oil platforms become visible
(see inset) and actually explain the slow moving vessels. The sur-
roundings of the harbor of Scheveningen with its popular beach are
shown in 11F. Some typical vessels close to the coast are visible
via a manually defined color map: fishing vessels (yellow), plea-
sure craft (green), special craft, e.g., a rescue vessel, in red, and
others, often small crafts, in pink. Noticeable in this area is a cargo
ship (blue) relatively close to the beach; this is suspicious as such
ships are not expected close to the coast. In Figure 11G, there are
two hotspots with small vessel types; the one on the right is the
harbor of the city Hellevoetsluis, while the left one is near the Har-
ingvlietdam. The existence of a lock explains the concentration of
waiting ships on the bottom left-hand side of the Haringvlietdam
and also explains why only small vessels sail in this neighborhood.
By clicking on vessels we find in Figure 11H that the special crafts
are a dredger at work (left) and a law enforcement vessel (right). In
the course of its duty the latter stops multiple times. Finally, Figure
111 shows a potential threat since a fisher stops in a sea lane.

6.4 Risk Assessment

Some vessels are more dangerous than others. In this use case, we
create a density map showing the possible risks of various vessel
types. In the DM we put the vessel type and the area on the axes
and define the following subsets, with ’large’ being a larger area
than 9000 m? and "small’ the rest: Large cargo vessels (blue), large
tankers (purple), small passenger ships (pink), small high speed
craft (orange) and other type of small ships (green). The color map
is given by the color map preset mentioned in Section 4.4. The
color mapped densities are composed with J,4¢ to show the most
dangerous types in an certain area. To illustrate possible risks of
dangerous vessels, we have identified three classes of danger and
we have assigned a large kernel with high weight for more dan-
gerous vessel types. In this risk density map we can see that the
shoreline is not put in danger, and that dangerous tankers take the
left route, while less dangerous cargo vessels take the route closer
to the shore.
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Figure 12: A risk map with various vessel types: large cargo vessels
(blue), large tankers (purple), small passenger ships (pink), small
high speed craft (orange), and other type of small ships (green).

7 CONCLUSIONS AND FUTURE WORK

We have presented a method to explore multivariate trajectories
with density maps. To support massive real-world trajectory data
sets, we have significantly improved the density field computation
time with respect to previous implementations by means of high-
end graphics hardware. As aresult, we are able to combine multiple
density fields quickly, which allows us to enrich density maps. The
combination of density fields takes place in either density aggrega-
tion or the combination of images of density fields, which can be
interactively defined by the user. Density aggregation is typically
useful for quantitative analysis, while image composition enables to
make a distinction between subsets. The set of aggregations tends
to be fairly complete, though the framework can be extended easily
with new aggregations. We have applied our method to vessel tra-
jectories allowing us to reveal what takes place when, find anoma-
lously behaving vessels, drill down on attributes to solve ambigui-
ties in density fields, and conduct risk assessments.

In future research, we will further investigate the parameters in
our method, the interaction to set them, and possibilities for new
visual cues to render these parameters. A user study should answer
how effective density maps are for analysis tasks. The framework
may be extended with a multi-pass technique that takes a density
field as a parameter for another density field. For instance, we can
vary the kernel radius based on another density field. For vessels,
this could lead, for instance, to more features in busy harbors, if
the kernel radius is decreased for higher densities. Furthermore, the
direction is an important feature of trajectory data, which has not
been addressed yet in density maps in an appropriate way. Finally,
we are interested if the method can support analysis of moving ob-
jects in other domains, by exploring different data sets.
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